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Interactions in NMR
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Quadrupolar nuclei

The Periodic Table of the Elements
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Quadrupolar nuclei

| =1
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Origin of the quadrupolar interaction

* Nuclear structure can be described by expansion as a series of multipoles

Spin monopole dipole quadrupole octapole
=0 electric 0 0 0
| = 1/2 electric magnetic 0 0
| =1 electric magnetic electric 0
| = 3/2 electric magnetic electric magnetic

Nuclei with spin quantum number | > 1/2 have
a non spherical distribution of charge in the
nucleus

This gives rise to a quadrupole moment (eQ)



Origin of the quadrupolar interaction

« The quadrupole moment interacts with the electric field gradient (EFG)
present at the nucleus (eq)
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* The interaction is anisotropic, i.e., depends upon orientation



Quadrupolar Hamiltonian

electric quadrupole
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Quadrupolar Hamiltonian

The frame where V is diagonal is called the principal axis system (PAS)
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This gives the Hamiltonian in the PAS
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Definitions

Magpnitude (also QCC, NQCC, C_, xq, %)
Cq = (eQV,,)/h = (eQeq)/h
Quadrupolar splitting parameter
0 PAS = 3C/ 4121 - 1) (or mgPAS = 3C4/ 21(21 - 1))
Asymmetry (cross-sectional shape)

Ng = (Vo — Vo)V, With 0 <mg <1

Quadrupolar product

Py = Cq (1+1y2/3)"2



coordination number

Origin of the EFG

The EFG is caused by the distribution of charges in the system

We can estimate to a first approximation that it arises from the coordinating
atoms

In reality longer range interactions need to be included

For high symmetry C, =0

Cq, increases as symmetry
drops

Exact C, depends also on eQ

27
Al Cy / MHz After Kentgens et al.,

Geoderma 80, 271 (1997)



Perturbation theory

* Neglecting dipolar and CSA contributions, we can write the total Hamiltonian as
the sum of the Zeeman and and quadrupolar Hamiltonians

H = H,+H,

« Although often large, the quadrupolar interaction is usually much smaller than the
dominant Zeeman interaction

Cq ~ 0 to 30 MHz

« lts effect on the nuclear energy levels may therefore be described as a
perturbation (or a correction) to the Zeeman levels

First-order approximation
E = E,+E,
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Spin | = 1 lineshapes

= = Ng = 0.4
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Experimental acquisition

« The broad quadrupolar lineshapes can be difficult to acquire accurately

« Solution is to use an echo pulse sequence

lineshape
distortions

v PN

single pulse echo sequence



Experimental acquisition

« To refocus the quadrupolar broadening we need a quadrupolar echo

90°, — 1t —90°,
v Selection of p = %1
' K J\ coherences pathways
Anidlbaat refocuses quadrupolar
+ broadening and gives
P9 AN good S/N
0 x i Selection of p = +1
l N I ! )\ coherence (“Exorcycle”)
S refocuses quadrupolar
1 broadening and CSA but
P N lower S/N

See Antonijevic et al., J. Magn.
Reson. 164, 343 (2003)



Effect of MAS

static
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MAS
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2H MAS NMR of Mg(OD),

« The quadrupolar broadening has a
similar orientational dependence to
dipolar and CSA interactions and so
can be removed by magic angle
spinning

* The magnitude of the interaction is lb
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Example: ?H NMR of oxalic acid

Two 2H species
2lo 1I0 (; —;0 —éO ppm
UM
10'00 (l) -1 (')00 ppm | oloo é -1 (‘)00 ppm
MAS

static

Cutajar et al., Chem. Phys. Lett.
423, 278 (2006)



Rotor synchronization

« To improve sensitivity and ensure accurate lineshapes we can rotor synchronize

our spectral acquisition R

» AN

X
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Dwell time equal to rotor period

T T T T
200 100 0 -—100 -200 ppm

Spectral width equal to spinning rate

1 T T T
40 20 0 -20 ppm




Spin | = 3/2
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| =5/2

| =7/2

| =9/2

High spin systems
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Effect of MAS

As for spin | = 1, the quadrupolar broadening in the ST (proportional to 3cos?
0 —1) can be removed by magic-angle spinning

The magnitude of the interaction is often such that many spinning sidebands
are observed even at fast MAS rates

Mn NMR of KMnO, || 7

ST
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CT observation

In many cases the ST are so broad they are rarely observed (or excited) and
so we focus attention only on the CT

CT

Li MAS NMR of zeolite LiSX,
showing three Li species

T~
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Sh
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Feuerstein et al., Micro.
Meso. Mater. 26, 27 (1998)



Second-order quadrupolar broadening

When the perturbing interaction is large the first-order correction described
previously may not be sufficient to fully describe the system and we need to use
higher-order correction terms

E =E,+EMW+E@Q+E,®+ ...

For the quadrupolar interaction, the perturbation to a second-order
approximation often needs to be considered

E = E,+E,M+E®

The second-order correction is much smaller than the first-order correction



Spin | = 3/2
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Spin | = 3/2
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Second-order quadrupolar broadening

« Second-order quadrupolar frequency for an energy level/transition can be
described (for n, = 0) by

( (DPAS)
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Second-order quadrupolar broadening

Spin Transition A B C

= 3/2 CT -2/5 —8/7 54/35
ST 4/5 417 —48/35

= 5/2 CT -16/15 —64/21 144/35
STy 2/5 —4/3 6/5
ST, 56/15 80/21 —264/35




Spin | = 3/2 CT lineshapes

Ng= 0 Ng = 0.2 Ng= 04
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Quadrupolar broadening and MAS

With sample rotation around B

( (DPAS

o « ) [ava(5) () + Cat(B) ¢4 O]

(DO
d?o(BR) o< (3 cos? g — 1)

d00(BR) < (35 cos* By — 30 cos? By + 3)

« Second-rank term d?,,(Bg) = 0 when B; = 54.736°

«  But d4,,(54.736°) # 0, so although the lineshape is narrowed under MAS the
quadrupolar broadening is not completely removed

« Toensure d*,,(Br) = 0, Bg must be 30.56° or 70.12°



2 kHz

Quadrupolar broadening and MAS

static

_

)

)

k MAS

Lineshape is significantly
narrowed by MAS

Fourth-rank anisotropic
quadrupolar broadening remains

Isotropic quadrupolar shift

o< ((0g™A5)%my) A (1 + ng?/3)



Spin | = 3/2 MAS lineshapes

Nao = 0 Nqg = 0.2 Nq = 04
(a) (b) ()
Ng = 0.6 Ng= 0.8 Ng= 1.0
(d) () (f)
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Spin | = 3/2 VAS lineshapes

* No single angle is able to remove both the second-rank and fourth-rank

second-order quadrupolar broadening

/

2
/0 54.74
6343

Ganapathy et al., J. Chem. Phys. 4360, 77 (1982)



Experimental acquisition

We use MAS in order to ensure dipolar interactions and CSA is removed
along with the second-rank quadrupolar broadening

A pulse rarely executes the perfect rotation, unless w, is greater than any
offsets present in the system

®, >> (,)QPAS m, << (DQPAS

“hard” pulse “soft” pulse
“non-selective” pulse “selective” pulse
nutation at rate of w, CT nutation rate (I + 1/2) o,

different nutation rates
depending on ®, and my"AS



Experimental acquisition

« For CT gradual progression from , to (I + 1/2) w, as ®,"AS increases

« Use low power pulses to ensure CT selectivity and minimal lineshape
distortion

Vrftp

Kentgens, Geoderma
80, 271 (1997)



Experimental acquisition

- If the second-order quadrupolar broadening interaction is large we may
require an echo to acquire the broad CT lineshapes

« To refocus second-order quadrupolar broadening we need a spin or Hahn
echo not a quadrupolar echo

For CT observation
low-power selective
WY WTIV pulses are used (~15-
Y 30 us for 90°)

« The 7 duration should be chosen to minimise any T, differences either
between sites or across a powder lineshape

* For best results, t should also be synchronized with the rotor (i.e., T = n 1)



Experimental acquisition

static (echo) MAS 27Al NMR of

a b aluminium
acetylacetonate

no decoupling

— S

(¢ d
U Cq = 3.0 MHz
: Ng =0.15
with _
decoupling S0 = 0 ppm
| | | | | |
40 0 —40 40 0 —40



Example: 2°Na NMR

Novel layered material Na,[(VO),(HPO,),C,0,].2H,0
Space group cannot be determined easily by X-ray  P2./mor P2,

2 distinct resonances by 2Na MAS NMR 94T
Space group cannot be P2./m

Exp

Sim

d (ppm)

Ashbrook et al., Inorg.
Chem. 45, 6034 (2006)



Example: /Al NMR of minerals

Substitution of Al into MgSiO, is important in the inner Earth

«  Where does the Al substitute, the six-coordinate Mg site or the four-coordinate
Si site?

| | |
200 100 0 —100 —-200
d (ppm)



MAS lineshapes

* In many cases, the overlap of a number of broad resonances hinders spectral
interpretation and assignment

70 NMR of MgSiO
’ How many oxygen species are

present?
94 TMAS What are their quadrupolar and
chemical shift parameters?
| ] I | |
200 100 0 ~100  -200 How can we remove the

broadening and obtain a high-

0, (ppm) _
resolution spectrum?



